Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 111(18): 3633-41, 2007 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-17439110

RESUMO

We have investigated the static second hyperpolarizabilities (gamma) of the singlet diradical systems with intermediate diradical character involving phenalenyl radicals connected by acetylene and vinylene pi-conjugated linkers, 1 and 2, using the hybrid density functional theory. For comparison, we have also examined the gamma values of the closed-shell and pure diradical systems with almost the same molecular size as 1 and 2. In agreement with our previous prediction of the diradical character dependence of gamma, it turns out that the gamma values of 1 and 2 are significantly enhanced compared to those of the closed-shell and pure diradical systems. In the present case, distinct differences in gamma values are not observed between the two pi-conjugated linkers, though the diradical character is found to depend on the kind of linker. Furthermore, we have investigated the spin multiplicity effect on gamma. Changing from the singlet to the triplet state, the gamma values of the systems with intermediate diradical character in the singlet state are quite reduced, though those of the pure diradical systems are hardly changed. Such spin multiplicity dependence of gamma is understood by considering the difference of diradical character between their singlet states together with the Pauli principle. The present results provide a possibility of a novel control scheme of gamma for phenalenyl radical systems involving pi-conjugated linkers by adjusting the diradical character through the change of the linked position of pi-conjugated linkers and the spin multiplicity.

2.
J Chem Theory Comput ; 3(5): 1699-707, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26627616

RESUMO

Ab initio spin-flip configuration interaction (SF-CI) methods with the finite-field (FF) scheme are applied to the calculation of static second hyperpolarizabilities (γ) of several singlet diradical systems, i.e., the model H2 molecule under dissociation, p-quinodimethane, o-quinoid five-membered ring, and 1,4-bis(imidazole-2-ylidene)cyclohexa-2,5-diene (BI2Y) models. The SF-CI method using the UHF reference wave function provides the qualitatively correct diradical character (y) dependence of γ in a wide range of a diradical character region for H2 under dissociation and p-quinodimethane as well as o-quinoid five-membered ring models. For BI2Y, which is a real diradical system, a non-negligible spin contamination is found in the spin-unrestricted Hartree-Fock (UHF) triplet state, which results in overestimations (SF-CIS) or underestimations (SF-CIS(D)) of γ. Such deficiencies are significantly reduced when using the pure spin state, i.e., the restricted open-shell HF (ROHF) triplet wave function as the reference wave function. These results indicate the applicability of the FF-SF-CI method starting with a pure or a nearly pure high-spin state to provide qualitative or semiquantitative γ for large-size diradical systems. For selected systems, these SF-CI results are also compared to the SF equation of motion coupled cluster singles and doubles (SF-EOM-CCSD) and to SF time-dependent density functional theory (SF-TDDFT) schemes. In particular, large amounts of Hartree-Fock exchange in the functional are required to obtain qualitatively correct dependence of γ on y in the case of p-quinodimethane.

3.
J Chem Phys ; 125(7): 074113, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16942328

RESUMO

The origin of the diradical character dependence of the second hyperpolarizability (gamma) of neutral singlet diradical systems is clarified based on the perturbation formula of gamma using the simplest diradical molecular model with different diradical characters, i.e., H2 under bond dissociation. The enhancement of gamma in the intermediate diradical character region turns out to originate from the increasing magnitude of the transition moment between the first and second excited states and the decrease of that between the ground and first excited states, respectively, with the increase in diradical character. This feature confirms that open-shell singlet conjugated molecules with intermediate diradical characters constitute a new class of third-order nonlinear optical systems, whose gamma values can be controlled by the diradical character in addition to the conjugation length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...